94 research outputs found

    Conservation laws for self-adjoint first order evolution equations

    Full text link
    In this work we consider the problem on group classification and conservation laws of the general first order evolution equations. We obtain the subclasses of these general equations which are quasi-self-adjoint and self-adjoint. By using the recent Ibragimov's Theorem on conservation laws, we establish the conservation laws of the equations admiting self-adjoint equations. We illustrate our results applying them to the inviscid Burgers' equation. In particular an infinite number of new symmetries of these equations are found and their corresponding conservation laws are established.Comment: This manuscript has been accepted for publication in Journal of Nonlinear Mathematical Physic

    Numerical Ricci-flat metrics on K3

    Full text link
    We develop numerical algorithms for solving the Einstein equation on Calabi-Yau manifolds at arbitrary values of their complex structure and Kahler parameters. We show that Kahler geometry can be exploited for significant gains in computational efficiency. As a proof of principle, we apply our methods to a one-parameter family of K3 surfaces constructed as blow-ups of the T^4/Z_2 orbifold with many discrete symmetries. High-resolution metrics may be obtained on a time scale of days using a desktop computer. We compute various geometric and spectral quantities from our numerical metrics. Using similar resources we expect our methods to practically extend to Calabi-Yau three-folds with a high degree of discrete symmetry, although we expect the general three-fold to remain a challenge due to memory requirements.Comment: 38 pages, 10 figures; program code and animations of figures downloadable from http://schwinger.harvard.edu/~wiseman/K3/ ; v2 minor corrections, references adde

    Lack of Trehalose Accelerates H2O2-Induced Candida albicans Apoptosis through Regulating Ca2+ Signaling Pathway and Caspase Activity

    Get PDF
    Trehalose is a non-reducing disaccharide and can be accumulated in response to heat or oxidative stresses in Candida albicans. Here we showed that a C. albicans tps1Δ mutant, which is deficient in trehalose synthesis, exhibited increased apoptosis rate upon H2O2 treatment together with an increase of intracellular Ca2+ level and caspase activity. When the intracellular Ca2+ level was stimulated by adding CaCl2 or A23187, both the apoptosis rate and caspase activity were increased. In contrast, the presence of two calcium chelators, EGTA and BAPTA, could attenuate these effects. Moreover, we investigated the role of Ca2+ pathway in C. albicans apoptosis and found that both calcineurin and the calcineurin-dependent transcription factor, Crz1p, mutants showed decreased apoptosis and caspase activity upon H2O2 treatment compared to the wild-type cells. Expression of CaMCA1, the only gene found encoding a C. albicans metacaspase, in calcineurin-deleted or Crz1p-deleted cells restored the cell sensitivity to H2O2. Our results suggest that Ca2+ and its downstream calcineurin/Crz1p/CaMCA1 pathway are involved in H2O2 -induced C. albicans apoptosis. Inhibition of this pathway might be the mechanism for the protective role of trehalose in C. albicans

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore